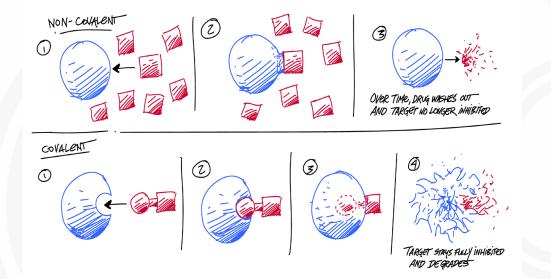

Backgrounder BMF-219's Mechanism of Action In Diabetes and Oncology

BMF-219's Mechanism of Action

BMF-219 Exerts Transient Decrease in Menin Protein

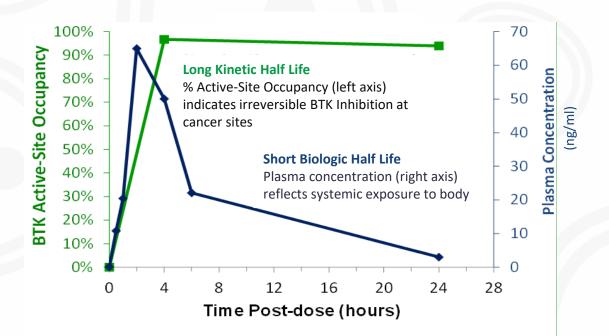
Menin Half Life Varies By Compartment

Half Life in Cytoplasm: <1hr


Half Life in Nucleus: 6-8 hrs

Menin's half-life in nucleus is most relevant for pharmacological intervention

- BMF-219 produces robust decrease in expression of target protein (Menin)
- Effect continues beyond established nuclear half-life of menin, indicating robust effect that is not impacted by protein turnover


BMF-219 is a Covalent Binding Agent – High Affinity and Long Residence Time

Non-Covalent vs Covalent Inhibition

Target inhibition persists after the drug has been cleared from the system leading to <u>lower drug doses</u> and <u>less</u> <u>frequent dosing regimens</u> versus non-covalent approaches

Covalent Inhibition Profile

biomea FUSION[°] We Aim to Cure[®]

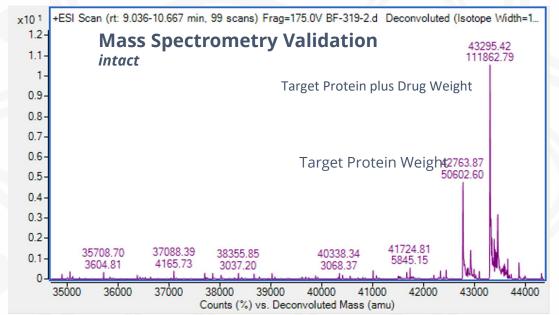
Covalent Inhibitors - A History of Medical & Commercial Success

Aspirin **Osimertinib (TAGRISSO)** Penicillin OH PhO Me COaH **Remdesivir (VEKLURY)** Ibrutinib (IMBRUVICA) Sofosbuvir (SOVALDI)

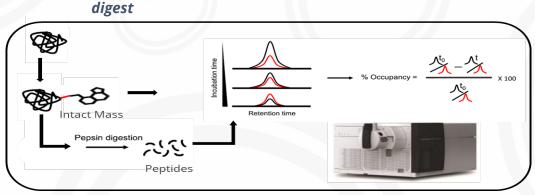
Notable Covalent Inhibitors

Compounds in Blue Were Co-Invented or Co-Developed by Biomea Fusion Senior Leadership

- Aspirin was the first commercialized covalent drug
- Notable precision oncology and infectious disease programs leverage covalent mechanisms
 - Precision Oncology:
 Osimertinib and Ibrutinib both target kinases and are used in subpopulations with specific genetic biomarkers
 - Antivirals:


Remdesivir and **Tenofovir** both target reverse transcriptases and are leveraged to treat HCV and other viruses including HIV and COVID-19

Biomea – Fusion System


Biomea Fusion End-to-End Research Capabilities

- In-house chemistry and research labs with approximately 40 experienced R&D staff
- Established CRO relationships in US, Europe, China and India
- Biochemical, biophysical, and cellular assays run in house and at CROs
- Fast synthesis/assay testing cycle times
- In-house confirmation of covalent adducts by Mass Spectrometry (intact and digest)

Mass Spectrometry Validation

Biomea – Fusion System

Target identification to IND candidate in 18 months

Target to Hit	Custom Lead	Lead Optimizatio	on	IND
		$-\frac{1}{2}$		3

Covalent target/ligand validation

Visual integration of crystal structures of target and reactive cysteines

Utility:

Differentiated insights from X-ray crystal structures, identifying target cysteines

|-|-|-|/

Custom engagers

Proprietary AI platform with VR validation matches novel custom engagers to cysteines. No physical library screening.

Utility:

Covalent starting leads provided for AI/VR scoring

ጉ **Custom scaffold creation** Custom built synthesis to

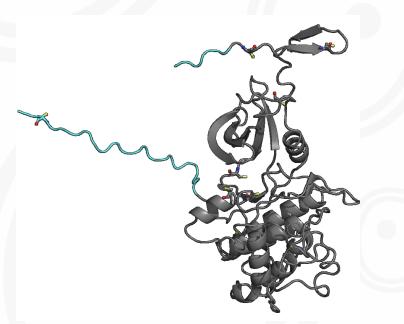
create candidates with desired properties

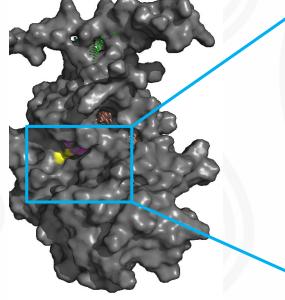
Utility:

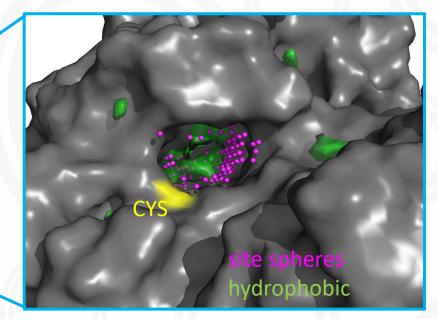
AI/VR program platform yields 20-30 scaffolds, which are synthesized for in vitro testing

Refinement

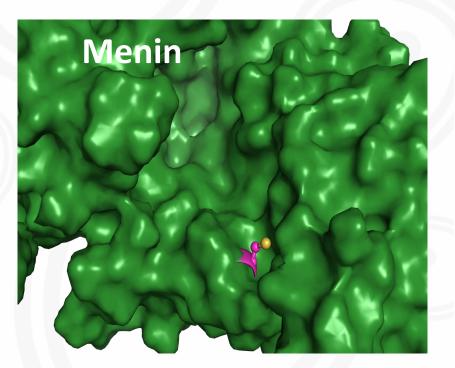
Building in drug-like properties, optimizing PK/PD profile, and maintaining specificity


Utility:


Scaffolds are further refined with Mass spec, animal, and cell-based assays


Biomea – Fusion System

Biomea Fusion System – Discovery and Development of Novel Covalent Inhibitors against High-Value, Validated Disease Targets



- Predicted structures for ~23,400 human genes; 14,200 novel vs PDB.
- Analyze individual domains if needed potential artificial inter-domain pockets
- Manual curation for high interest targets
- AlphaFold2.0 are apo (without ligand) structures
 - Pocket identification using established methods "bindability" ranking

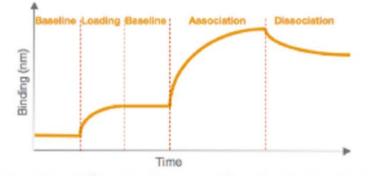
- Top ranking pocket with sufficient hydrophobic character
- \rightarrow Virtual screening for ligands
- → Biomea Linker/Warhead **Determination Protocol**
- \rightarrow Lead Molecule(s)

BMF-219: Evidence of Binding to Specific Cysteine in Menin

Targetable Cysteine	Binding Selectivity
CYS1	100.0%
CYS2	0.0%
CYS3	0.0%
CYS4	0.0%
CYS5	0.0%
CYS6	0.0%

Peptide Mapping Results Summary

- Analyzed all reactions through Freestyle
- Only observed BMF-219 attached to Cys1 (Biomea numbering)
- Did not observe BMF-219 attached to any other cysteine


Peptide Mapping Data: BMF-219 binds only to single, desired target cysteine

BMF-219: Evidence of Target Engagement (Kd) with Menin

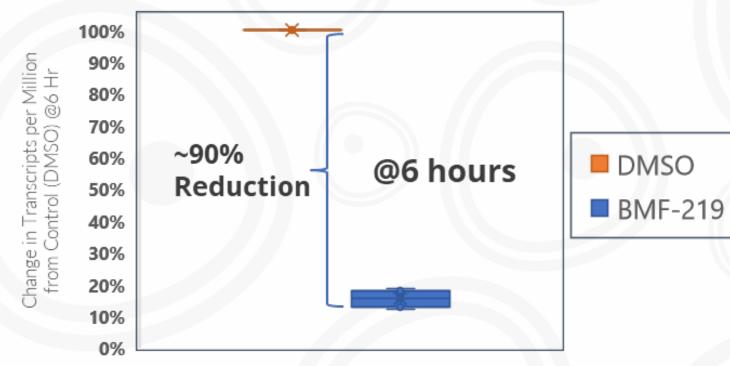
Kd (nM)
250
<0.001
<0.001
1,250
1,804
3,191

*Compound D displays a K_{dis} rate that supports covalent engagement

Measuring the shift over time enables the determination of binding

Comments:

Samples A-F were tested by Octet BMIA for affinity to Menin-Biotin.

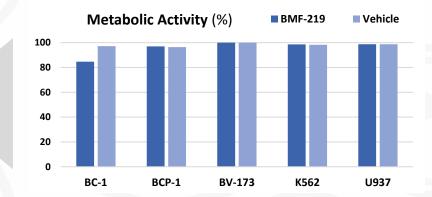

SA sensors were loaded with Menin-Biotin

Binding constants were calculated $f_{\phi}^{\downarrow}r$ association and dissociation of 7 dilutions of each compound. 1:1 Curve Fits were applied and Global Fits were calculated as:

Analyte ID	KD	kon	k _{dis}	R ²	
Compound A	1.478E-06	8.101E+02	1.197E-03	0.718	
Compound B	9.965E-05	7.179E+02	7.154E-02	0.977	
Compound C	2.274E-07	1.698E+03	3.861E-04	0.568	
Compound D	<1.0E-12	4.009E+02	<1.0E-07	0.713]
Compound E	7.049E-06	3.367E+03	2.373E-02	0.636	
Compound F	9.461E-05	4.085E+02	3.865E-02	0.987	

BMF-219 effectively Downregulates Menin Expression

MEN1 Gene Expression Decreases w/ BMF-219 Treatment

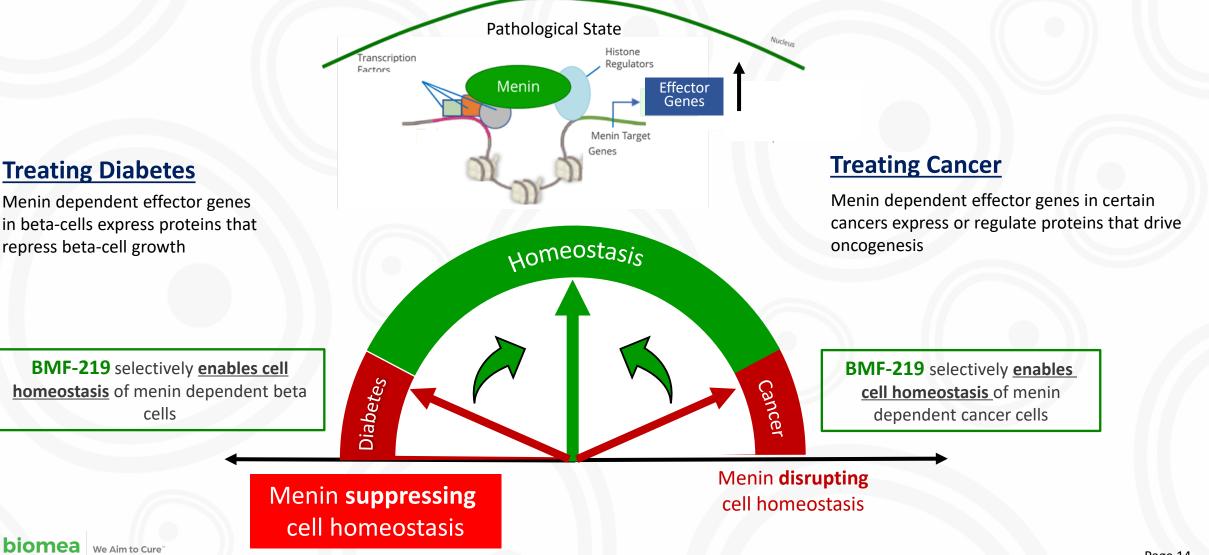


Clean Safety Profile Observed for BMF-219 in Nonclinical Toxicology Studies

\checkmark	Kinase Screening			
169 kinases screened ; only two showed >50% inhibition with BMF- 219				
\checkmark	Oncopanel Cell Line Screen			
Minimal impact of BMF-219 on cell metabolism in leukemia and lymphoma cell lines that have wild type MLL1				
	• • •			
	• • •			
cell lines that SafetyScree impact (>50	at have wild type MLL1			

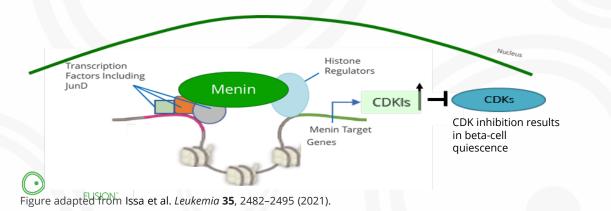
BMF-219 had less reactivity than the approved covalent drugs omeprazole and neratinib

Mean half-life (min)
123.3
197.7
>360
322.3
>360
>360

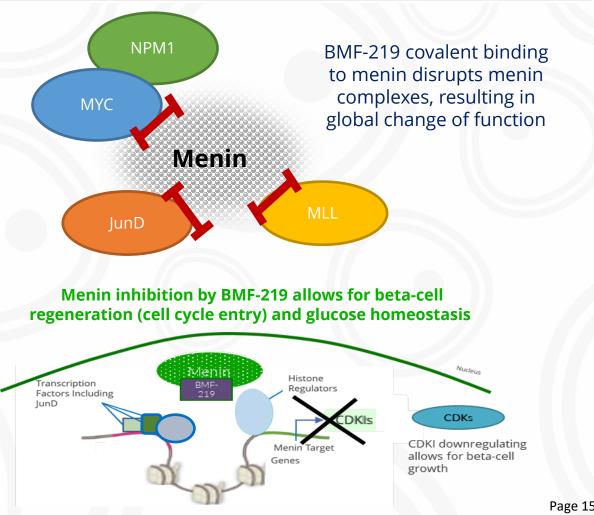


BMF-219 Mechanism of Action - impact in Diabetes

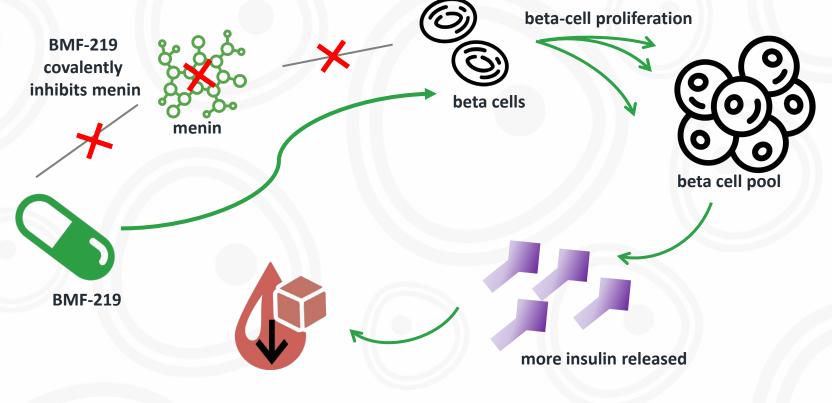
Backgrounder – BMF-219 and the Role of Menin in Diabetes


Restoring Balance in Menin Dependents Diseases is Context Specific

Inhibition of Menin Allows for Beta-cell Regeneration


Potential Mechanism of Menin in Diabetes

- Menin is an epigenetic protein that plays a key role in regulating beta-cell proliferation and function.
- Menin inhibition has previously been shown to improve glycemic control in high fat-induced diabetic mice (Ma et al., 2021)
- Inhibition of menin/JunD complex reduces the expression of Cyclin Dependent Kinase Inhibitors (CDKIs), allowing CDKs to drive beta-cell proliferation.


Menin regulates beta-cell quiescence (cell cycle arrest)

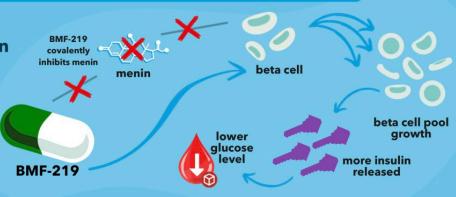
BMF-219: A selective covalent menin inhibitor

BMF-219 Controls Beta-Cell Proliferation and Mass by Inhibiting Menin

- Menin is a transcriptional scaffold protein that controls the expression of proteins that regulate beta-cell proliferation.
- Menin is thought to act as a brake on beta cell turnover / beta cell growth. Inhibition of menin could be a diseasemodifying approach to treat diabetes.

lower glucose level

Cure Dr. Kim, S.K. et al., Science. 2007 Nov 2. doi: 10.1126/science.1146812.; Linnmann et al. American Society for Nutrition. Adv. Nutr. 5: 278–288, 2014; F. A. Van Assche et al. British Jornal of Obstetrics and Gynaecology, 1978 November; Hughs et al. Endocrinology, March 2011, 152(3):847–855 Page 16


Inhibition of Menin Has been Observed to Occur Naturally During Pregnancy

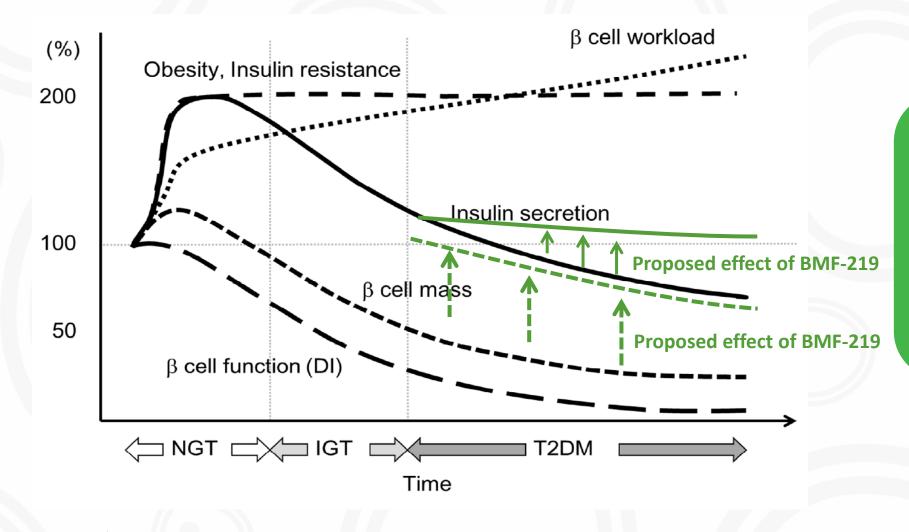
HOW DOES BMF-219 INTEND TO IMPACT BETA CELLS?

BMF-219 inhibits an important protein that potentially controls beta cell growth - menin

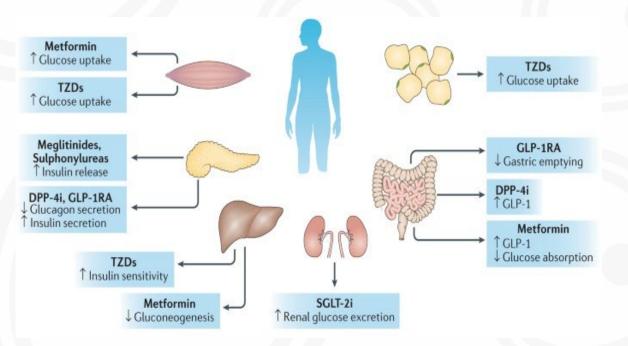
BMF-219 is a first-in-class investigational oral molecule in clinical development directly targeting menin.

BMF-219 explores the potential to cure diabetes by naturally regenerating insulin-producing beta cells through the potent and durable inhibition of menin.

IS THERE A NATURALLY OCCURING PROOF-OF-CONCEPT?


Stanford researchers* have demonstrated preclinically that during pregnancy, the hormone prolactin downregulates menin, which results in the proliferation of maternal pancreatic beta cells, increased insulin production, and the maintenance of normal glucose levels to prevent gestational diabetes.

*Menin Controls Growth of Pancreatic b-Cells in Pregnant Mice and Promotes Gestational Diabetes. Science, (2007), 801-806, 318


The Goal for BMF-219 is to Improve Glycemic Control without Continuous Medication

BMF-219 is aimed to increase beta cell mass and function, thereby increase insulin production in order to achieve glycemic control - without the need of continuous medication.

biomea FUSION[®] *Int. J. Mol. Sci. 2016, 17, 744; doi:10.3390/ijms17050744

BMF-219 is a Potential First in Class Diabetic Agent – Addressing the Root Cause of Disease

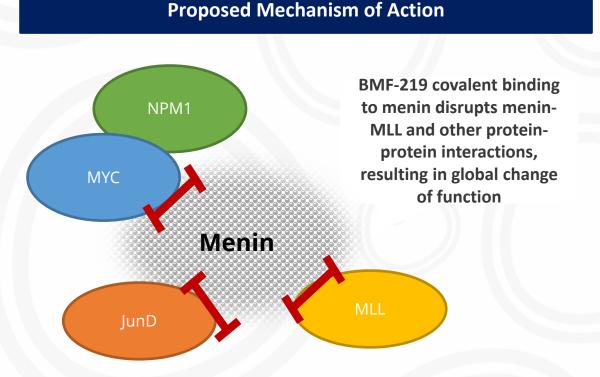
Nat Rev Endocrinol 12, 337–346 (2016). https://doi.org/10.1038/nrendo.2016.51 **Currently Approved Therapies Are Chronic Treatment** Avg Duration of Drug MoA HbA1c Change (%, Wk 52) **Glycemic Control** DPP4 -0.63 (-0.68, -0.58) 23 months SGLT2 -0.80 (-0.87, -0.72) GLP1 -0.99(-1.20, -0.78)29 months -0.96 (-1.16, -0.76) 45 months MET

NIH.gov; Nathan et al., NEJM 2022

Currently approved therapies are primarily targeting the **Symptoms of Type 2 Diabetes:** *Hyperglycemia*

Investigational BMF-219 Has a Unique Value Proposition

How is BMF-219 Differentiated from Currently Available Diabetes Therapies?


Addressable Population may Include All People with Diabetes

BMF-219 Mechanism of Action – In Oncology

BMF-219 Has the Potential to Impact Important Binding Partners in Multiple Tumors

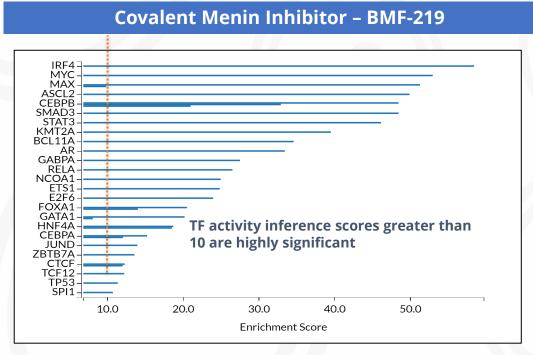
Resulting change of function of menin impacts important binding partners involved in oncogenesis

MLL NPM1 MYC

Other

Target Patient Population

- Acute Leukemia: MLL-r
- Acute Leukemia: NPM1 mutant
- Acute Leukemia: Ras mutant
- DLBCL: DHT / DEL


۰

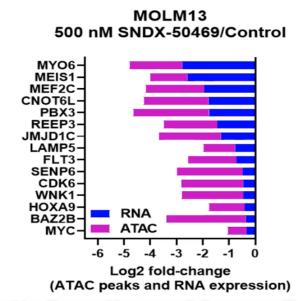
- Multiple Myeloma: MYC addicted
- KRAS mutant Solid Tumors: Colorectal Lung Pancreatic
- CLL: r/r population
- Liquid and Solid Tumors

BMF-219 reduces menin levels and function, and has the potential to address additional patient populations with tumors that are dependent on menin or some of its binding partners

Backgrounder – BMF-219 in Oncology

BMF-219 Disrupts Multiple Binding Partners of Menin, including MYC, MLL, and JUND

TF activity inference using ChIP-seq of differentially expressed genes in MOLM-13 cells incubated with 500 nM BMF-219 at 24 hours. Each bar represents a study in the GEO repository using the specified TF antibody.

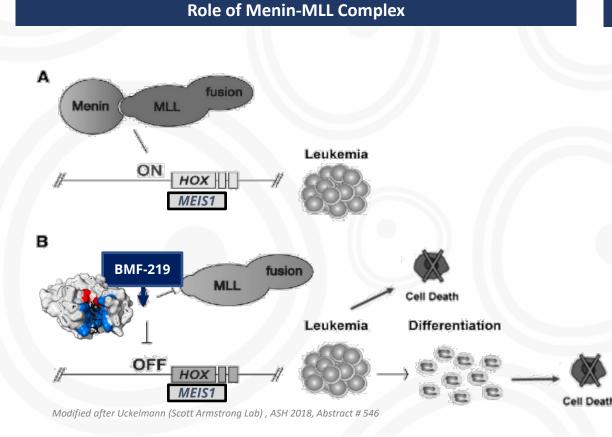

 In MOLM-13 cells treated with BMF-219, the top transcription factors regulating gene expression are MYC and MAX

tumors

biomea We Aim to Cure"

• IRF4, MYC, and MAX are known drivers for some forms of DLBCL, (addicted) multiple myeloma, and multiple additional

Non-Covalent Menin Inhibitor – SNDX-50469



Blood (2021) 138 (Supplement 1): 3340.

- **Significantly less impact on MYC expression** (2x fold) and genomic function by clinical non-covalent menin inhibitor
- In contrast, BMF-219 treatment led to a ~100-200x reduction in MYC expression at 24 hours

Backgrounder – BMF-219 in Oncology BMF-219 in AML / ALL Liquid Tumors

Inhibits a Complex Interaction Independent of the MLL Fusion Partner

BMF-219 : a covalent inhibitor at the Menin-MLL interface

Menin-MLL Fusions

Different fusions result in different binding affinities between MLL fusion proteins and Menin

MLL Fusions (AML/ALL)	Prevalence (%)
AF4	36%
AF9	19%
ENL	13%
AF10	8%
ELL	4%
PTD	4%
80+ additional fusions	16%

Source: Meyer, C. et al. (2017). The MLL recombinome of acute leukemias in 2017. Leukemia, 32(2), 273–284.

Backgrounder – BMF-219 in Oncology

BMF-219 - MYC Dysregulation is Believed to Play an Important Role in Multiple Tumors: Diffuse Large B-cell Lymphoma (DLBCL), Multiple Myeloma (MM) and Chronic Lymphocytic Leukemia (CLL)

Development Stage: Phase I Clinical Trial (COVALENT-101) enrolling patients with relapsed/refractory DLBCL, MM and CLL

Key Facts		Proposed MOA	Relevant Pathway	
Estimated Addressable Population		Menin complexes with MYC in the expression of MYC	Tumor leverages MAPK pathway	
Disease (r/r with MYC Implication)	Estimated US Patient Population (Annual Incidence)	target genes. BMF-219 robustly decreases MYC gene expression and genomic function. (Blood (2021) 138 (Supplement 1): 4318.)	(KRAS/NRAS) RAS	
DLBCL	~6,500		RAF	
MM	~9,500		MEK	
CLL	~8,000	Menin	↓ ↓	
 therapy ~20-50% MYC dysree newly diagnosed M ~50-70% of advance MYC dysregulation ~10,000 (40%) of DI Triple Hit and Doubl overexpression) >50% of relapsed/red 	s to increase with stage and line of egulation or translocations in IM patients ed r/r MM patients have LBCL patients are Double and le expressors (BCL2 and MYC efractory DLBCL are double	MYC TEFb RNA Polymerase MYC Target Ge Source: Madden et al., Molecular Cancer volume 20, Article number: 3 (2021); Martínez-Martín et al. Cancer Drug Resist 2021;4:842-65; Xia Y. et al., Acta Haematol 2020;143:520-528; Zhu L, et al. (2017) Nat. Commun 8, 15278.; Musti et al., Oncogene . 2002 Sep 19;21(42):6434-45.	MYC Menin BMF-219 RAS effector genes/MYC	
expressors			target genes	

Menin-MYC Interaction is Observed to Play an Important Role in KRAS Mutant Solid Tumors (Lung, Colon, Pancreatic)

Key Facts			Proposed MOA		Relevant Pathway	
Estimated Addressable Population			BMF-219 inhibits the menin/ MYC interaction and downregulates expression of MYC and		Tumor leverages MAPK pathway	
Tumor Type (KRAS Mutant)	Estimated US Patient Population		MYC target genes, including KRAS (Blood (2021) 138 (Supple. 1): 4318.)			RAS
	(Annual Incidence)	DMSO	KRAS Gene Expression	- 24hr	(KRAS/NRAS)	*
Lung (NSCLC)	~58,000	s Normalized to DMSO				RAF ▼
Colon (CRC)	~60,000	Be North				MEK
Pancreatic (PDAC)	~53,000	Fold Change	DMSO BMF-219 500 nM MOLM-13 M	BF-219 1 uM IA-PACA-2		♥ ERK
• MYC is a major dov	wnstream effector of					¥
the MAPK pathway tumors		1.2	Relative Gene Expres	ssion – BMF-219		мус
expression and ger	decreased MYC gene nomic function and numerous MYC driven ples.	Fold-Change (mRNA expression) Relative to DMSO Control 0.6 0.7	MOLM-13 BCL2 Significant change BCL-2, MYC and H BMF-219 Treatme	OXA9 w/	BMF-219	RAS effector genes/MYC
iomea We Aim to Cure"		0.0				target genes
FUSION [®]		DI	MSO BMF-219 500 nM, 24	BMF-219 1 μM, 24 hrs		Pa

500 nM, 24 hrs Contact: Chunyi Zhao PhD Associate Director of Investor Relations & Corporate Development czhao@biomeafusion.com T: +1 650-460-7759

THANK YOU

biomea FUSION[®] We Aim to Cure[®]

Biomea Fusion 900 Middlefield Road, 4th floor Redwood City, CA, 94063 biomeafusion.com

